You are here


Neuroscience without neurons: Bodies without brains and other musings in science

We use interdisciplinary approaches including theory and experiments to understand how computation is embodied in biological matter. Examples include cognition in single cell protists and morphological computing in animals with no neurons and origins of complex behavior in multi-cellular systems. We will also share new tools to enable “virtual reality arena” for single cells - enabling never before seen behavior of single cells over multiple spatial and temporal scales.

Aubrey Gorbman Endowed Lecture: Multimodal communication and reproductive-dependent sensory plasticity in an African cichlid fish

Animals live in a multisensory world and use different sensory channels to communicate during crucial behavioral contexts such as aggression and reproduction. Despite the importance of this multimodal communication, there are relatively few species in which information on sender signals and receiver responses are known. How do individuals send information in multiple sensory channels and where is this information processed and integrated in the receiver’s brain to produce context-dependent behaviors?

Cellular innovations in chordate development

Each animal contains a rich diversity and lineage of cell types, equal in complexity to the diversity of animal species themselves. However, much less is known about the origins of cell type. Dr. Phil Abitua, who has done his graduate research with Mike Levine (UCB) and postdoc research with Alex Schier (Harvard), will speak on his work to reconstruct the evolutionary origins of two important vertebrate-specific cell types: neurogenic placodes and neural crest cells.

Biology Postdoc Seminar: Eric Lumsden, Steven Peterson, & Sarah Guiziou

Investigating the Mechanisms of Seasonally-Driven Song Circuit Plasticity in Songbirds (by: Eric Lumsden in the Perkel Lab)

Generalized neural decoding across participants and recording modalities (by: Steven Peterson in the Brunton Lab)

A synthetic biology tool to decode the development of lateral roots (by: Sarah Guiziou in the Nemhauser Lab)

Improving student learning through understanding reasoning and problem solving tactics

Classroom practices affect student behavior, and by extension, their learning. Through studying how students discuss clicker questions in active learning classrooms, we have found that students rarely use reasoning when answering in-class questions. However, their use of reasoning increases when they are cued to use reasoning by instructors or peers, or when under pressure of accountability. Can students transfer in-class group practices to individual assessment opportunities that require reasoning and logic?


Subscribe to RSS - Neurobiology