You are here

Development

Nest design, construction, and spatial organization in the superorganism

An organism’s appearance is the result of evolutionary pressures, and those same pressures apply to the structures organisms build, such as nests. Superorganism nests function as extended phenotypes to perform key biological processes, to survive, grow, and reproduce. Social insects are masters of solving organizational problems because they must coordinate thousands of individuals to accomplish these goals. One such problem is how to construct nests, and then, how to organize resources within that nest. Both, presumably, are optimized to maximize colony performance.

Creating activities for building inclusive classrooms and engaging students to think critically

Education research has shown conclusively that undergraduates learn and retain more with active learning. In this interactive seminar, I will share with you some of the different ways I use evidence-based active and inclusive learning strategies to help students learn scientific concepts, to develop their critical thinking skills, and to create equitable and inclusive learning environments in classrooms small and large.

Adventures in cell herding: understanding and controlling collective cell migration

We are working to accomplish for cells something like what a shepherd and sheepdogs bring to flocks of sheep: control over large-scale collective cellular motion. As coordinated cellular motion is foundational to many forms of multicellular life, being able to ‘herd’ or program large-scale cell migration raises exciting possibilities for accelerated healing, tissue engineering, and novel biomaterials.

Moving and Grooving: Exploring Behavioral Multitasking in Drosophila Courtship

Success in life, for humans and all animals, requires multitasking. Multitasking — the simultaneous execution of two or more behaviors by a single agent — may at times seem effortless and safe, such as walking and talking, or challenging and potentially fatal, such as driving and texting. Performance differences between different multitasking contexts are likely reflected in the cognitive demands of the constituent behaviors, yet the neural substrates that facilitate or constrain multitasking remain unknown.

Pages

Subscribe to RSS - Development