Adult Neurogenesis Leads to the Functional Reconstruction of a Telencephalic Neural Circuit
Submitted by Eliot A.-Brenowitz on
Submitted by Eliot A.-Brenowitz on
Submitted by Joya-Mukerji on
Submitted by Joya-Mukerji on
Last year, we celebrated the Nobel Prize in Medicine or Physiology awarded for the discoveries of the molecular basis of daily rhythms in cells. These circadian (~24 h) rhythms are common across phyla and cell types. In vertebrates, the suprachiasmatic nucleus (SCN) synchronizes circadian rhythms in behavior and physiology to the external light cycle, but the mechanisms by which this occurs are unclear.
Asymmetric cell division is a fundamental mechanism to diversify cell fates. Adult stem cells often divide asymmetrically to generate one stem cell and one differentiating cell to maintain tissue homeostasis. Non-random sister chromatid segregation has been proposed as a potential mechanism utilized by stem cells to protect the genome from mutations or to confer distinct epigenetic information to daughter cells. However, the underlying mechanisms or the biological significance of such a phenomenon has never been directly demonstrated.