You are here

Ecology

Report on the 2013 rapid assessment survey of marine species at New England bays and harbors

Wells CD, Pappal AL, Cao Y, Carlton JT, Currimjee Z, Dijkstra JA, Edquist SK, Gittenberger A, Goodnight SW, Grady SP et al..  2014.  Report on the 2013 rapid assessment survey of marine species at New England bays and harbors. :32.

CANCELED: Plant-pollinator interactions and movement in the context of global change

More than 60% of earth’s terrestrial surface is managed by humans as agriculture, pasture, or urbanized areas, and land conversion continues to be the primary driver of global biodiversity loss. Despite this, little is known about the impacts of land management on multi-species interactions, gene flow, and ecosystem function. The Jha Lab investigates ecological and evolutionary processes from genes to landscapes, to quantify global change impacts on plant-animal interactions, movement ecology, and the provisioning of ecosystem services.

Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils

Hufnagel B., de Sousa S.M, Assis L., Guimaraes C.T, Leiser W., Azevedo G.C, Negri B., Larson B.G, Shaff J.E, Pastina M.M et al..  2014.  Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils. PLANT PHYSIOLOGY. 166(2):659-677.

Unique adaptations of a grazing, high-altitude primate

Life at high altitude is associated with many physiological challenges, including exposure to conspicuous stressors such as hypoxia and extreme cold. Consequently, most animals living at high altitude have been under strong selection to develop adaptations to these challenges. Unveiling adaptations in other high-altitude-living animals, including nonhuman primates, could therefore help illuminate the mechanisms underlying adaptive evolution of myriad traits. Here, we investigated the genetic adaptations to high altitude in a novel nonhuman primate model, the gelada monkey.

A model for how students develop principle-based reasoning in physiology

To gain expertise in a field is to understand and use underlying disciplinary principles. Too often students rely on rote memorization to solve problems rather than apply appropriate principles of physics that governs biological phenomena, that is, use principle-based reasoning. Students who rely on memorization can list the steps of generating an action potential or stomatal opening but cannot reason to a correct prediction when changes are introduced in the system, e.g. when a toxin is applied.

Pages

Subscribe to RSS - Ecology