You are here

Marine Biology

Building an integrated framework for tissue morphogenesis with the zebrafish inner ear

How simple tissues give rise to geometrically complex organs with robust shapes and functions is a fundamental question in biology with important implications in disease and translational medicine. The current mechanistic framework explains how upstream genetic and biochemical information pattern cellular mechanics and thereby tissue dynamics. In this framework, the main driving force is cell-intrinsic and generated by actomyosin contractility.

Unwrapping Glial Engineering in the Vertebrate Nervous System

The long-term goal of the Kucenas Lab is to fundamentally understand the cellular and molecular mechanisms that mediate neural-glial and glial-glial interactions during nervous system development and injury/regeneration. Using Danio rerio (zebrafish) as a model system, we combine genetic and pharmacological perturbation, single cell manipulation, laser ablation/axotomy, small molecule screening, and in vivo, time-lapse imaging to directly and continuously observe glial cell origins, behaviors, and interactions in an intact vertebrate.

Pages

Subscribe to RSS - Marine Biology