You are here

Cell and Molecular Biology

Heraclitus and the cytoskeleton: the role of force feedback in molecular self-assembly

The mechanical properties of most eukaryotic cells is determined by the actin cytoskeleton. A major challenge to understanding the physical properties of actin networks, however, is that they are dynamic: their assembly and disassembly are integral to their function. External forces are particularly relevant to ‘dendritic’ actin networks, generated by the nucleating and crosslinking activity of the Arp2/3 complex, a seven-subunit protein complex that builds crosslinked filament arrays by creating new filaments that branch from the sides of existing filaments.

Cachexia-like wasting in drosophila

During animal development, homeostasis, and aging, anything that grows eventually decays or undergoes consumption, which is known as atrophy or wasting. Thus, like growth, wasting is a fundamental biological process. Importantly, wasting is also part of a complex systemic disorder associated with many diseases. Cachexia, the wasting syndrome commonly observed in advanced cancer patients, affects approximately eight million people worldwide. Due to the complexity of the disease, it is challenging to dissect the molecular mechanisms of cachexia.

Pages

Subscribe to RSS - Cell and Molecular Biology