You are here

A novel basal ganglia pathway forms a loop linking a vocal learning circuit with its dopaminergic input

TitleA novel basal ganglia pathway forms a loop linking a vocal learning circuit with its dopaminergic input
Publication TypeJournal Article
Year of Publication2008
AuthorsGale SD, Person AL, Perkel DJ
JournalJ Comp Neurol
Volume508
Issue5
Pagination824-39
Date Published2008
ISBN Number1096-9861 (Electronic)0021-9967 (Linking)
KeywordsAnimals, Basal Ganglia/anatomy & histology/chemistry/*physiology, Dopamine/analysis/*physiology, Male, Finches, Learning/*physiology, Nerve Net/anatomy & histology/chemistry/*physiology, Neural Pathways/anatomy & histology/chemistry/physiology, Washington
Abstract

Dopamine has been implicated in mediating contextual modulation of motor behaviors and learning in many species. In songbirds, dopamine may act on the basal ganglia nucleus Area X to influence the neural activity that contributes to vocal learning and contextual changes in song variability. Neurons in midbrain dopamine centers, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), densely innervate Area X and show singing-related changes in firing rate. In addition, dopamine levels in Area X change during singing. It is unknown, however, how song-related information could reach dopaminergic neurons. Here we report an anatomical pathway that could provide song-related information to the SNc and VTA. By using injections of bidirectionally transported fluorescent tracers in adult male zebra finches, we show that Area X and other song control nuclei do not project directly to the SNc or VTA. Instead, we describe an indirect pathway from Area X to midbrain dopaminergic neurons via a connection in the ventral pallidum (VP). Specifically, Area X projects to the VP via axon collaterals of Area X output neurons that also project to the thalamus. Dual injections revealed that the area of VP receiving input from Area X projects to the SNc and VTA. Furthermore, VP terminals in the SNc and VTA overlap with cells that project back to Area X. A portion of the arcopallium also projects to the SNc and VTA and could carry auditory information. These data demonstrate an anatomical loop through which Area X activity could influence its dopaminergic input.

URLhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18398824