You are here

The dynamic pollen tube cytoskeleton: Live cell studies using actin-binding and microtubule-binding reporter proteins

TitleThe dynamic pollen tube cytoskeleton: Live cell studies using actin-binding and microtubule-binding reporter proteins
Publication TypeJournal Article
Year of Publication2008
AuthorsCheung AY, Duan QH, Costa SS, de Graaf BHJ, Di Stilio V*, Feijo J, Wu HM
JournalMolecular Plant
Date Published2008
ISBN Number1674-2052

<p>Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization. Growth occurs exclusively at the tube apex, rendering pollen tube elongation a most dramatic polar cell growth process. A hallmark pollen tube feature is its cytoskeleton, which comprises elaborately organized and dynamic actin microfilaments and microtubules. Pollen tube growth is dependent on the actin cytoskeleton; its organization and regulation have been examined extensively by various approaches, including fluorescent protein labeled actin-binding proteins in live cell studies. Using the previously described GFP-NtADF1 and GFP-LIADF1, and a new actin reporter protein NtPLIM2b-GFP, we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long, streaming actin cables along the pollen tube shank, and a subapical structure comprising shorter actin cables. The subapical collection of actin microfilaments undergoes dynamic changes, giving rise to the appearance of structures that range from basket- or funnel-shaped, mesh-like to a subtle ring. NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases, AtROP-GEF1, to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton. Contrary to the actin cytoskeleton, microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes. Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1, GFP-AtEB1, we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics. These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.</p>

URL<Go to ISI>://000259104300013