You are here

Rasmussen Lab awarded LEO Foundation research grant

Tuesday, August 27, 2024 - 07:15

The Rasmussen Lab was recently awarded a prestigious 2-year grant from the LEO Foundation. The Denmark-based LEO Foundation provides grants supporting international research in skin biology and disease. This latest round of research grants sees DKK 44 million to 12 international skin research projects, that will illuminate new corners of dermatological knowledge.

The project title is "Control of Langerhans cell dynamics and function by the microtubule cytoskeleton." Congratulations to the Rasmussen Lab!

Project information from the LEO Foundation website:

Jeffrey Rasmussen’s project investigates the mechanisms governing Langerhans cells’ immune response in wound healing, particularly the role of the microtubule cytoskeleton.

Skin provides a robust and durable physical barrier essential for regulating hydration and repelling pathogens. Damage to skin must be rapidly resolved to maintain organ homeostasis. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to dynamically surveil the skin microenvironment, which contains epithelial keratinocytes and somatosensory peripheral axons.

The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are not well understood. Jeffrey Rasmussen and his lab have developed a tractable system using adult zebrafish to study Langerhans cell dynamics. Initial studies using this system revealed several new discoveries, including: 1) that Langerhans cells are the primary phagocyte for degenerating somatosensory axons; 2) Langerhans cells undergo stereotyped responses to local and tissue-scale keratinocyte wounds; and 3) the actin regulator ROCK regulates key aspects of Langerhans cell wound responses. Despite advances in identifying mechanisms of actin function in Langerhans cells, roles for the microtubule cytoskeleton in Langerhans cell biology remain essentially unknown. In preliminary studies, Jeffrey Rasmussen has developed a novel transgenic reporter for microtubules in Langerhans cells and found that the microtubule cytoskeleton dynamically reorganizes during wound responses. His project aims to determine how the microtubule cytoskeleton contributes to the intracellular trafficking and dynamic wound responses of Langerhans cells.

The results of Jeffrey Rasmussen’s project could lead to new fundamental understandings of Langerhans cell biology and dynamics.

Fields of interest: