Neural Circuits

Research overview 2324

Description: 

Animals are covered in sensory structures of stereotyped patterns and numbers. These sensors collect, process, and transmit information such as the current state of the animal’s environment or how the animal is moving through the world. The recognition of behaviorally relevant stimuli allow animals to search for mates or food, avoid predators, rear their young, or navigate over long distances or in complex environments. Thus, the collection, processing, and transmission of relevant information has important fitness consequences for all animals. Additionally, the actuators that allow animals to move through their respective environments (i.e., legs, wings, fins, etc.) are also covered in sensors that are arranged in specific patterns and numbers. Focusing on the wings of the hawkmoth Manduca sexta, I study the interaction between sensor placement and/or number, the stimuli to which an actuator is sensitive, and how this interaction affects the control of movement.

Research overview 2313

Concise description: 
Neurobiology of behavior
Description: 

Complex and intellectually challenging problems can be so commonplace that they escape our attention. Much of the research in my lab focuses on one such everyday phenomenon - the motion of a fly through the air. While the buzz of fly wings is more likely to elicit a sense of annoyance than wonder, insect flight behavior links a series of fundamental processes within both the physical and biological sciences: neuronal signaling within brains, the dynamics of unsteady fluid flow, the structural mechanics of composite materials, and the behavior of complex nonlinear systems. The aim of my research is to elucidate the means by which flies accomplish their aerodynamic feats and other behaviors, focusing primarily on the function of the nervous system. A rigorous mechanistic description of behavior, however, requires an integration of biology, engineering, physics, and mathematics. Students and post-docs fascinated with any aspects of insect behavior, physiology, or evolution are invited to apply to my laboratory. What is more important than an interest in insect behavior, however, is a love of complexity and a commitment to interdisciplinary approaches. Much of our research involves the fruit fly, Drosophila melanogaster, because of the powerful genetic approaches that are uniquely available in this species. We view this organism - not as a convenient laboratory model - but as a successful animal with a complex and varied life history.

Research overview 2312

Concise description: 
Chemical communication and neurobiology of behavior
Description: 

Neuroethology and the Role of Chemical Communication

Chemical communication is the oldest sensory system and underlies nearly every critical ecological and evolutionary interaction. My research interests are in chemosensory physiology and ecology, which pertains to understanding the influence of chemical signals on ecological interactions, and the neural basis of behavior. From the spatial scale of a sperm cell, to that of a macroorganism, the ability to locate the source of a chemical cue mediates many fundamental biological processes.

Research overview 2270

Concise description: 
Speciation via plant-pollinator interactions
Description: 

I am broadly interested in understanding the genetic basis of evolutionary processes, specifically the generation and maintenance of phenotypic variation and the maintenance of reproductive isolation during secondary contact between sister species.

My current work focuses on investigating pollinator-mediated reproductive isolation between two species of Mimulus wildflowers native to the Sierra Nevada mountains of California.  I am specifically looking at the effect of pigmentation and scent on attraction and visitation by hawkmoths (Sphingidae), which are known to pollinate one species of Mimulus in California (Mimulus aurantiacus).

Research overview 2137

Concise description: 
Function and development of birdsong
Description: 

My research group focuses on the function and the development of song. Our study species is the song sparrow. We study function in the field, via a long-term banding, recording and radio-tracking program combined with field experiments (mostly playback studies). We study development both in the field, where we focus on young males we have banded in the nest or netted during their first summer, and in the laboratory, where we attempt to recreate the key conditions identified in the field studies. Our laboratory song-learning studies use multiple live

Research overview 2094

Concise description: 
Neurophysiology of complex learned behavior
Description: 

Vocal learning in songbirds is an experimentally accessible model system in which to study the neural mechanisms of learning. Juvenile birds memorize song(s) from an adult tutor and then use auditory feedback from their own songs to compare with their memory of the tutor song(s). This comparison guides a process of motor learning; through practice, juvenile birds gradually learn to produce a highly stereotyped song that resembles the tutor song. Extensive research has investigated the underlying neural circuits that are involved in song learning and production. Our lab uses a variety of electrophysiological, anatomical and behavioral approaches to probe the neural mechanisms that mediate song learning and song behavior.
Two main neural circuits have been implicated in song production and learning. The motor pathway descends from forebrain nucleus HVC, which projects to nucleus RA, which then projects to brainstem motor and premotor neurons controlling muscles of the vocal organ, the syrinx, and those of respiration. This pathway is essential for production of song. A second circuit, the anterior forebrain pathway (AFP), arises from HVC as well and projects to the basal ganglia structure area X, which projects to the thalamic nucleus DLM, which projects to a forebrain nucleus LMAN, which projects back to motor pathway nucleus RA. The AFP is essential for vocal learning but not production of previously learned song. Neurons of the AFP exhibit specific responsiveness to auditory information and are therefore well placed to provide the motor pathway with auditory feedback about the quality of the bird's own song.
Our main long-term goal is to understand at the level of neurons, synapses and circuits how song is learned and produced. Our current work falls into several categories:

- Mechanisms of pattern generation in the motor pathway
- Structure and function of the anterior forebrain pathway
- Evolutionary origin of the anterior forebrain pathway in songbirds
- Mechanisms underlying seasonal control of song (in collaboration with Eliot Brenowitz)

Research overview 2033

Concise description: 
Sensorimotor control of movement using neural, biomechanical approaches
Description: 

 

Neurons and neuronal networks decide, remember, modulate, and control an animal¹s every sensation, thought, movement, and act. The intimate details of this network, including the dynamical properties of individual and populations of neurons, give a nervous system the power to control a wide array of behavioral functions. We want to know more about neuronal dynamics and networks; about synaptic interactions between neurons; about how neuronal signaling and behavior and control and environmental stimuli are inextricably linked.

Research overview 2026

Concise description: 
Neuroendocrinology of song behavior and adult neurogenesis
Description: 

My research involves the integration between mechanism and function in animal behavior, with an emphasis on acoustic communication in birds and frogs. The principal current focus is on the song control system in the brains of songbirds. I emphasize a comparative, evolutionary approach to this system, and combine behavioral studies in the field with laboratory techniques in neuroendocrinology, neuroanatomy, molecular biology, and signal analysis. I am currently pursuing three major topics of study in the song system. One concerns the physiological and molecular mechanisms, and the behavioral consequences, of seasonal plasticity observed in the morphology of song regions of the brain. A second topic concerns the recruitment of new neurons to a song nucleus in the forebrain of adult birds, studied from the perspective of its physiological regulation and the influence of environmental factors. The third topic relates to the observation that neurons in song control nuclei receive input from auditory regions, and respond selectively to the presentation of conspecific song. I am investigating the role of song nuclei in the behavioral recognition of conspecific song in the contexts of mate choice and territorial defense.

Syndicate content